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Abstract
Random dense packing of binary hard discs generated under the infinitesimal
gravity protocol is investigated by a Monte Carlo simulation in the entire region
of the size ratio and the concentration. When the size difference of the two
species is small, the packing fraction of disc assembly becomes lower than that
of the monodisperse system. Defining the adjacent neighbours of a disc through
the radical tessellation, we show that the packing fraction can be related to the
distance of adjacent discs and that the suppressed packing fraction is caused by
an increase of the adjacent neighbours which are not seen in the monodisperse
system.

1. Introduction

Random packings of spheres serve as useful models for a variety of condensed matter systems.
For example, the structure of amorphous metals, colloidal suspensions and deposition of
particles are well described by random dense packing of spheres. Although the random packing
of spheres has been studied for a long time for this reason, there are many unsolved problems
for random packing.

Considering the fact that the packing fraction depends on the randomness of the system,
Torquato et al have proposed a new concept of maximally random jammed state (MRJ) [1].
The MRJ state is defined as the structure that minimizes an order parameter among all jammed
structures. It is mathematically well defined, and some order parameters were proposed to
estimate for the density of the MRJ state. Although they determine several possible MRJ
states, the order parameter which by itself can measure various types of order has not been
found [1–3].

In the theoretical analysis of random dense packing, monodisperse spheres have well been
investigated. In physical systems of interest, however, packing particles are often polydisperse,
and it is not clear how polydispersity affects the random dense packing. Although random
packing of binary hard discs has been studied as a function of size ratio and concentration [4–
7], the effect of mixing on the packing has not been elucidated, and more elaborate analysis is
necessary for practical applications.
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A B

Figure 1. Schematic illustration of the infinitesimal gravity protocol used in this work. After
contacting with another disc, each disc, A and B, rolls down around the target disc maintaining
contact until it makes contact with another disc. If the horizontal coordinate of the centre of the
rotated disc lies between centres of the other two discs, it cannot roll down further and settles there
(B), or it rolls down around the new disc (A).

In this paper, we investigate the structure of a random dense packing of binary hard
discs. It is known that the structure of packing depends on the protocol utilized to produce
the packing. In order to avoid the subtlety in the definition of the MRJ due to the protocol
dependence, we study the dense packing produced by the drop-and-roll or the infinitesimal
gravity protocol using a Monte Carlo simulation. Although it is important to consider the
MRJ state and jammed structure, it is worth studying the structure produced by this sequential
protocol since in practical applications the packing structure of particles is produced by a fixed
procedure such as molecular vapour deposition. It is supposed that the packing fraction of a
random assembly of monodisperse discs is φ(2d) � 0.82 [8, 9]. We obtain the dependence
of the packing fraction on the ratio of the radius of the discs and the concentration. We also
present an analysis of disc assembly using radical tessellation, which is a generalization of
Voronoı̈ tessellation. It is shown that the packing fraction is closely related to the distribution of
distance between adjacent neighbours defined by radical tessellation. We describe the method
for generating disc assemblies and show the results of simulation in section 2. In section 3, we
propose a formalism to estimate the packing fraction using radical tessellation. In section 4,
comparing our formalism with the results of numerical simulation, we give a discussion on
the results. Our conclusion is given in section 5.

2. Simulation

2.1. Simulation method

We prepare a container of L × L with a periodic boundary condition in the horizontal direction.
We introduce a disc above the container at a horizontal position selected randomly. The radius
of the disc, which is RS (small) or RL (large), is chosen randomly at a given concentration x .
In the infinitesimal gravity protocol, the disc is dropped vertically towards the bottom of the
container. If the disc makes contact with a disc (the target disc) introduced earlier, it stops
falling and rolls down around the target disc keeping contact (see figure 1). The rotation is
continued until either its centre is as high as the centre of the target disc or it touches another
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Figure 2. A 3D plot of the packing fraction of a binary hard disc assembly as a function of size ratio
r and area fraction n. Each value was determined from an average of 20 samples. The contours
are drawn from 0.81 to 0.85 every 0.05.
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Figure 3. The packing fraction φ(n, r) of fixed r; (a) r = 0.1 and (b) r = 0.9. Each of the error
bars indicates the root-mean-square error.

disc. In the former case, the disc starts falling again. In the latter case, the disc behaves in two
different ways depending on the arrangement of the three discs. If the horizontal coordinate
of the centre of the rotated disc lies between centres of the other two discs, it cannot roll down
further and settles there (B in figure 1). If not, it rolls down around the new disc (A in figure 1).
When the disc settles into a stable position or makes contact with the base line, it is fixed there.
We repeat the process until the container is filled with discs.

In our Monte Carlo simulation the system size is set to L/2RL = 100 and discs at given
fraction x of the smaller disc are packed up to a height of 140 × 2RL. To reduce the effects of
the boundaries, upper and lower 20 × 2RL layers are discarded (so that the remaining area is
100 × 100 × 4R2

L), and then the packing fraction φ is calculated as a function of the disc size
ratio r = RS/RL and the area fraction of smaller discs n = x R2

S/{(1 − x)R2
L + x R2

S}.

2.2. Results

The packing fractions φ(n, r) obtained from the Monte Carlo simulation are illustrated in
figure 2. Note that φ(0, r) = φ(1, r) = φ(n, 1) = φ(n, 0) = φ(2d) � 0.82. For r � 0, as n
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(a) (b)

Figure 4. Example of radical tessellation, (a), and generalized Delaunay triangles, (b), of an
assembly of binary discs, where difference of size is indicated by black and grey circles. In (b), the
solid lines connect the adjacent neighbours which contact each other and the dashed lines represent
the bonds which connect the separate adjacent neighbours.

is increased from n = 0, φ(n, r) increases dramatically, as shown in figure 3(a); as Odagaki
and Hoshiko [7] described, this feature can be understood as the result of the vacant spaces
between larger discs being filled by smaller discs. The increase of packing fraction reaches a
maximum at a certain n where the vacant spaces are almost filled up, and decreases to the value
for the monodisperse assembly. On the other hand, φ(n, r) for r � 1 shown in figure 3(b)
decreases from φ(2d) as n is increased from n = 0, and is almost constant over the wide range
of n until it increases to φ(2d) near n = 1. The decrease of φ(n, r) is due to the fact that the
smaller disc, which is too large to fill the vacant spaces, replaces the larger discs and destroys
the structure formed by larger discs.

In the intermediate region of r , φ(n, r) behaves like a mixture of the two extreme
behaviours. As r increases from r = 0, the peak of φ(n, r) shifts to larger n and decreases in
magnitude, and the minimum of φ(n, r) appears at smaller n. Because the decrease of φ(n, r)

near n = 0 is the result of the replacing effect described above, the difference between the
minimum value and φ(0, r) increases as the disc size ratio reaches r = 1.

3. Radical tessellation analysis

The radical tessellation introduced by Gellatly and Finney [10] is a generalization of
Voronoı̈ tessellation defined for monodisperse spheres to polydisperse spheres, which was
first used extensively by Troadec et al [11] for dilute assemblies of binary discs.

In the Voronoı̈ tessellation in two dimensions, the space is partitioned into a set of polyhedra
where each edge is drawn as the perpendicularly bisecting line between two discs. The radical
tessellation is constructed as follows. First, we draw a line produced as the locus of points
from which the lengths of the tangents to two discs are equal. Secondly, we draw these lines
for all pairs of discs and we assign a tessellation to a disc. When the radical tessellation
is performed, each disc is surrounded by a convex polyhedron which fills the space without
gaps. This property is the same as the Voronoı̈ tessellation. At a vertex of these polyhedra,
only three lines meet at a time in the random assemblies. We define the two discs as adjacent
neighbours when radical cells of the two discs have one edge in common, and connect centres
of all adjacent neighbour pairs to form a triangular network (see figure 4).

It should be mentioned that this construction of a triangular network is different from
one introduced by Dodds et al [12]. The construction by Dodds et al is based on the
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Voronoı̈ tessellation for the centres, and the surface of Voronoı̈ polyhedra may cut the particles.
Our method based on the radical tessellation is known to be better for polydisperse systems [10].

For an infinite system, the mean number of adjacent neighbours for each disc Zm is equal to
6, which is a consequence of Euler’s condition, and therefore the number of triangles included
in the system is twice as many as the number of discs. As a result, the packing fraction of the
system φ is expressed in term of the mean area of triangles Am,

φ = π〈R2〉
2Am

(1)

where 〈R2〉 is the mean squared radius of discs in the system; for the binary disc under
consideration, 〈R2〉 = (1 − x)R2

L + x R2
S.

In the binary disc assembly, the triangles can be classified into four types according to the
sizes of the three discs at the vertices of a triangle: (LLL), (LLS), (LSS) and (SSS). In terms
of the mean area of the triangles Ai jk and the probability of finding them Pi jk, the mean area
Am is expressed as

Am = PLLL ALLL + PLLS ALLS + PLSS ALSS + PSSS ASSS. (2)

The probability Pi jk can be expressed in terms of the probability Pi which represents the
probability of finding an i -type disc at a vertex of a triangle as

PLLL = P3
L , PLLS = 3P2

L PS, PLSS = 3PL P2
S , PSSS = P3

S . (3)

If the assembly of discs is random, Pi is in proportion to the fraction, xi , of i -type discs, and
the mean number of adjacent neighbours of an i -type disc, Zi (Dodds model [12]):

Pi = xi
Zi

Zm
(4)

where Zm is the mean number of adjacent neighbours around a disc and Zm = xL ZL + xS ZS.
The mean area Ai jk can be roughly estimated from the mean length of the bonds. There are

three types of bonds, bi j , according to the species of discs at each side of a bond. Considering
the mean length of the bonds 〈bi j〉 and the combination of them, we can form four different
triangles. Instead of dealing with the mean area Ai jk directly, we approximate Ai jk by ai jk,
which is the area of these triangles. Using Helon’s formula, ai jk is expressed as

ai jk = √
s(s − 〈bi j〉)(s − 〈b jk〉)(s − 〈bki 〉) (5)

where

s = 1
2 (〈bi j〉 + 〈b jk〉 + 〈bki 〉). (6)

Although this evaluation ignores the correlation of bonds which compose a triangle, as shown
in next section, it is adequate to describe the behaviour of the packing fraction φ. Using
equations (1)–(4) and the approximation Ai jk � ai jk, the packing fraction φ(n, r) can be
calculated from Zi and 〈bi j〉 as

φ � π〈R2〉
2am

(7)

where am is the approximate mean area defined by equation (2) with ai jk in place of Ai jk.

4. Discussion

As we discussed in section 3, the packing fraction φ(n, r) can be calculated from the mean
adjacent neighbour numbers Zi and the mean bond lengths 〈bi j〉 using equation (7). We apply
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Figure 5. The mean number of adjacent neighbours around each species with r = 0.9 against n
from simulation. The diamonds and triangles represent the mean number of adjacent neighbours
around the larger disc and smaller discs respectively. The two solid lines denote equation (9).

this analysis to the case of r � 1, where the packing fraction of binary discs becomes lower
than that of monodisperse discs in our Monte Carlo simulation.

In figure 5, Zi obtained from our simulation for r = 0.9 is shown. This form of Zi is
well explained by the following assumption. In a generalized Delaunay triangle geometry the
minimum number of adjacent neighbours of a disc is 3 for each disc. Then we assume that
Zi − 3 is proportional to the length of circumference 2π Ri ; this leads to

ZL − 3

ZS − 3
= RL

RS
. (8)

This, combined with the condition Zm = 6, leads to an approximate expression for Zi ,

Zi = 3 +
3Ri

〈R〉 (9)

where 〈R〉 = (1− x)RL + x RS is the mean radius of discs in the system. This is also illustrated
in figure 5. Equation (9) is in good agreement with the simulation for r = 0.9.

It is worth noting that for smaller r the deviation from equation (9) increases. This is due
to increase of the vacant spaces where one more smaller disc can be put. In the assembly built
up by infinitesimal gravity protocol at smaller r , these vacant spaces often exist around larger
discs. It decreases the effective circumference length of the larger disc and hence the left-hand
side of equation (8) becomes less than RL/RS.

The next step to calculate φ(n, r) using equation (7) is to estimate the mean length of
each bond. In this stage, we use the information given by the simulation. As an example, we
obtained 〈bi j〉 as a function of n for r = 0.9 from the simulation and calculated φ(n, r = 0.9),
which is illustrated in figure 6. φ(n, r) calculated from 〈bi j〉 and Zi is qualitatively in
good agreement with the behaviour observed in the simulation. The quantitative difference
between the simulation and our estimation mainly comes from the approximation that ignores
correlations among the three sides constructing a generalized Delaunay triangle. We define
the correction factor by Ccor ≡ φ(2d)/φ(0, r) � 1.043 and show φ̃(n, r) = Ccorφ(n, r) in
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Figure 6. The packing fraction φ(n, r = 0.9) obtained from simulation (black circles) and
equation (1) (diamonds). In equation (1), the mean area, 〈Am〉, was evaluated approximately
from the mean bond lengths, 〈bi j 〉, in the simulation and the mean number of adjacent neighbours,
Zi , from equation (9). The modified packing fraction is also shown (triangles). It was multiplied
by a constant so that the value at n = 0 agrees with the simulation.

figure 6. The very good agreement of φ̃(n, r) with the simulation indicates that if we know
packing fraction of ideal discs, we can estimate the packing fraction from mean bond length
at least for r � 1.

It is worth mentioning that the correction factors arise from the correlation between the
bond lengths which constitute a triangle. In our model, the mean area of the triangles is
calculated assuming an uncorrelated bond length,but using the correction factor which involves
information of bond length correlation in the monodisperse system,we can estimate the packing
fraction of a binary disc assembly.

So far, the mean bond length has been obtained from the simulation. To estimate the
packing fraction when n and r are given, we must know 〈bi j〉 as a function of (n, r). To this
end, we analyse the bond lengths in detail. The bond length distribution in our simulation
is illustrated in figure 7. To compare with the equal disc assembly (n = 0 or 1) and the
binary mixture assembly, we realize that the major difference of bond distributions is in the
behaviour of the long length regime. In the equal disc assembly there is a discontinuity at a
certain length, bc

i j , over which the frequency is almost equal to zero. In the binary assembly,
however, the frequency over bc

i j has a non-zero value and decreases smoothly to zero. bc
i j is

in good agreement with the maximum value of the bond length when the contact disc network
forms a quadrilateral, and it can be calculated from the definition of radical tessellation (see
figure 4(b)). To evaluate the effects of this tail, we have defined the mean bond length from
a fictitious bond length distribution in which the tail part is discarded. Figure 8 shows the
packing fraction calculated from the fictitious bond length distribution. The packing fraction
thus obtained behaves completely differently from the simulation; it is convex upwards at the
centre. This indicates that, although the tail is small compared with the whole distribution, the
behaviour of the tail greatly affects the packing fraction.

This fact complicates the estimation of the mean bond length because the tail comes from
polygons which have more than four edges in the contact disc network and we have not so far
estimated the mean bond length as a function of (n, r) with sufficient accuracy.
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Figure 8. The packing fraction calculated from the tail-excepted bond length distribution function
at r = 0.9 against n (diamonds). The solid circles are the packing fraction obtained from the
simulation at the same r . The approximate packing fraction is very different, even qualitatively,
from the simulation.

To obtain the form of φ(n, r) at r � 1, we used equation (1) and paid attention to the
mean area Am instead of the packing fraction φ(n, r). If the disc assembly is sufficiently
jammed, the areas of triangles are limited within a narrow range around the mean value, and
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therefore the mean area, Am, would be comparatively easily estimated. At smaller r , however,
the assembly of binary discs has some large vacant spaces in the infinitesimal gravity protocol.
As a result, the areas of the triangles are distributed in a wider range, so that estimating the
mean area Am is more complicated.

Recently it has been shown that the jamming category which the disc assembly belongs to
plays an important role in determining the packing fraction [13]. For hard disc assemblies, three
jamming categories have been introduced by Torquato et al: local, collective and strict [14].
By direct observation of the structure we conclude that the assemblies in our simulation belong
to local jammed structure, at least when the size difference between two species is small. On
the other hand, when the size difference is larger, we found that the larger discs are locally
jammed but several smaller discs are not jammed. Although it is worth determining the precise
jamming category of our assemblies, it is beyond the scope of this paper since we restrict our
analysis to disc assemblies produced by a given protocol.

5. Conclusion

In this paper, we studied the random packing of binary hard discs produced by the drop-and-
roll protocol. From Monte Carlo simulations, we obtained the packing fraction as a function
of the disc size ratio r and the area fraction of smaller discs n. If r is sufficiently small,
the packing fraction increases at first as n increases, due to the smaller discs filling in vacant
spaces among the larger disc assembly, and then decreases to the packing fraction of the
monodisperse system. On the other hand, if the size difference between two discs is small, the
packing fraction decreases with increasing n at first, is almost constant over a wide range of
intermediate values of n, and increases to the equal disc value near n = 1. We also applied the
radical tessellation analysis to the binary disc assembly and showed that the behaviour of the
packing fraction can be reproduced qualitatively from the mean bond length 〈bi j〉 at least at
r � 1. We also concluded that the tail of the bond length distribution plays a significant role
in determining the packing fraction. The tail arises from polygons which have more than four
edges in the contact network, and makes estimation of packing fraction complicated.

Acknowledgment

This work was supported partially by the research fund from the Ministry of Education, Sports
and Culture.

References

[1] Torquato S, Truskett T M and Debenedetti P G 2000 Phys. Rev. Lett. 84 2064
[2] Truskett T M, Torquato S and Debenedetti P G 2000 Phys. Rev. E 62 993
[3] Kansal A R, Torquato S and Stillinger F H 2002 Phys. Rev. E 66 041109
[4] Visscher W M and Bolsterli M 1972 Nature 239 504
[5] Bideau D, Gervois A, Oger A and Troadec J P 1986 J. Physique 47 1697
[6] Barker G C and Grimson M J 1989 J. Phys.: Condens. Matter 1 2779
[7] Odagaki T and Hoshiko A 2002 J. Phys. Soc. Japan 71 2350
[8] Quickenden T I and Tan G K 1974 J. Colloid Interface Sci. 48 382
[9] Berryman J G 1983 Phys. Rev. A 27 1053

[10] Gellatly B J and Finney J L 1981 J. Non-Cryst. Solids 50 313
[11] Troadec J P, Gervois A, Annic C and Lemaı̂tre J 1994 J. Physique I 4 1121
[12] Dodds J A 1975 Nature 256 187
[13] Donev A, Torquato S, Stillinger F H and Connelly R 2004 J. Appl. Phys. 95 989
[14] Torquato S and Stillinger F H 2001 J. Phys. Chem. B 105 11849


